Leibniz Institute For Baltic Sea Research Warnemünde

Mytilus LARVAE IN THE SOUTH WESTERN BALTIC SEA – A BASIS FOR MUSSEL FARMING

Lukas Ritzenhofen^{1,2} | Xaver Lange¹ | Anna-Lucia Buer¹ | Gerald Schernewski^{1,2}

¹Leibniz-Institute for Baltic Sea Research Warnemünde, Seestraße 15, D-18119 Rostock, Germany ²Klaipeda University, Marine Research Institute, Herkus Mantas Str. 84, LT-92294 Klaipeda, Lithuania

Introduction & Objective

- Successful blue mussel production starts with the collection of mussel spat.
- Most areas in the Baltic Sea are characterized by sandy or muddy grounds.
- Limited amount of hard substrate leads to a limited and fluctuating blue mussel population.
- Mussel farm trial (2017 -2019) showed strong annual changes in *Mytilus* spp. larvae settlement.

Case Study Area "Greifswalder Bodden" (GWB)

	DUNUS	
SCIENCE FO	R A BETTER FUTURE OF THE BALTIC SEA REGION	

Klaipeda

University

Marine Research

Institute

0 / 11

- Are coastal areas, with a limited amount of hard substrate and lacking mussel beds, still suitable for site selection?
- Is external larvae transport sufficient enough to provide enough larvae for successful settlement in GWB?

<u>Figure 1:</u> a) Study site GWB with predominant sediments based on Tauber (2012a) as well as mussel beds outside of GWB (red dashed area) are adopted from Schiele et al. 2015, dotted red arrow represents larvae transport; b) Mussel farm set up within GWB; c) Example of mussel population within GWB; d) *Mytilus* spp. D-larvae stage.

Verification

Verification of modelled larvae dispersal was conducted via direct larvae sampling from the water column and settlement on sea signs in the study areas Greifswald Bay

Preliminary Results: Sea Sign Monitoring – Distribution Model – Larvae Sampling

<u>Figure 4:</u> a) Results of the sea sign monitoring (blue grading) and modelled larvae dispersal (green = < 100 larvae, red => 10.000) 2016; b, c) Modelled larvae dispersal during estimated spawning time April-May (2015, 2016).

Conclusion

Mussel larvae supply originating only from mussel beds within GWB seems

Modelled bottom temperature and recorded time-shifted larvae peaks indicate towards

Next Steps

Apply model approach to predict larvae dispersal from

<u>Figure 5:</u> a) The bottom water temperature profile shows when 15 °C was reached for the first time, it was assumed that reaching 15 °C inducies spawning, green stars indicate mussel beds; b) Mussel larvae peaks recorded at the sampling stations O11 & O133).

(Fig. 4) Preliminary results show that the sea sign monitoring partly fits modelled larvae distribution and that annual larvae dispersal show high spatial variability within GWB (Fig. 5) Modelled bottom temperature suggests different temporal spawning events leading to time shifted larvae peaks.

not sufficient enough to provide

annual steady blue mussel

postponed larvae peaks within GWB.

